A novel visible light responsive nanosystem for cancer treatment
نویسندگان
چکیده
منابع مشابه
A Novel Composite Membrane for pH Responsive Permeation
Objective(s) In this study, a kind of pH sensitive composite membrane was prepared and drug permeation through it was investigated in terms of pH. Rationale of this study originated from the fact that a pH change which may be a result of a disease state in the body can trigger drug release. Materials and Methods Here, a kind of pH sensitive composite membrane containing different nanoparticle ...
متن کاملA visible light-responsive iodine-doped titanium dioxide nanosphere.
I-doped titanium dioxide nanospheres (I-TNSs) were synthesized via a two-step hydrothermal synthesis route, their potential for the efficient utilization of visible light was evaluated. The prepared anatase-phase I-TNSs had a bimodal porous size distribution with a Brunauer-Emmett-Teller surface area of 76 m2/g, a crystallite size of approximately 14 nm calculated from X-ray diffraction data, a...
متن کاملCaging Metal Ions with Visible Light-Responsive Nanopolymersomes
Polymersomes are bilayer vesicles that self-assemble from amphiphilic diblock copolymers, and provide an attractive system for the delivery of biological and nonbiological molecules due to their environmental compatibility, mechanical stability, synthetic tunability, large aqueous core, and hyperthick hydrophobic membrane. Herein, we report a nanoscale photoresponsive polymersome system featuri...
متن کاملVisible light-responsive micelles formed from dialkoxyanthracene-containing block copolymers.
A class of dialkoxyanthracene-containing diblock copolymers is synthesized which possesses visible light-responsivity. These copolymers can self-assemble into a micellar structure in water. Green visible light (540 nm) is able to scissor these anthracene species and cleave the diblock copolymer into two fragments, inducing disassembly of the self-assembled micelles.
متن کاملAre dopant-stabilized visible light-responsive photocatalysts efficient and stable?
Nitrogen and carbon codopants-stabilized hierarchical porous ZnS microspheres undergo an unexpected dynamic transformation into hollow microspheres when nitrogen and carbon are removed from the former. Thus, such a transformation is evidence for the unprecedented stability of non-metal doped visible light-responsive photocatalysts.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale
سال: 2017
ISSN: 2040-3364,2040-3372
DOI: 10.1039/c7nr05050j